
Chapter 2

Comments, Conditions,
and Assertions

Concepts:
. Preconditions
. Postconditions
. Assertions
. Copyrighting code

/* This is bogus code.

Wizards are invited to improve it. */

—Anonymous

CONSIDER THIS: WE CALL OUR PROGRAMS “CODE”! The features of computer
languages, including Java, are designed to help express algorithms in a manner
that a machine can understand. Making a program run more efficiently often
makes it less understandable. If language design was driven by the need to
make the program readable by programmers, it would be hard to argue against
programming in English. Okay, perhaps

French!A comment is a carefully crafted piece of text that describes the state of the
machine, the use of a variable, or the purpose of a control construct. Many
of us, though, write comments for the same reason that we exercise: we feel
guilty. You feel that, if you do not write comments in your code, you “just know”
something bad is going to happen. Well, you are right. A comment you write Ruth Krauss: “A

hole
is to dig.”

today will help you out of a hole you dig tomorrow.
All too often comments are hastily written after the fact, to help under-

stand the code. The time spent thinking seriously about the code has long since
passed, and the comment might not be right. If you write comments before-
hand, while you are designing your code, it is more likely your comments will
describe what you want to do as you carefully think it out. Then, when some-
thing goes wrong, the comment is there to help you figure out the code. In
fairness, the code and the comment have a symbiotic relationship. Writing one
or the other does not really feel complete, but writing both provides you with
the redundancy of concept: one lucid and one as clear as Java.

The one disadvantage of comments is that, unlike code, they cannot be
checked. Occasionally, programmers come across comments such as “If you
think you understand this, you don’t!” or “Are you reading this?” One could, of
course, annotate programs with mathematical formulas. As the program is com-
piled, the mathematical comments are distilled into very concise descriptions of

34 Comments, Conditions, and Assertions

what should be going on. When the output from the program’s code does not
match the result of the formula, something is clearly wrong with your logic. ButSemiformal

convention: a
meeting of tie

haters.

which logic? The writing of mathematical comments is a level of detail most
programmers would prefer to avoid.

A compromise is a semiformal convention for comments that provide a rea-
sonable documentation of when and what a program does. In the code associ-
ated with this book, we see one or two comments for each method or function
that describe its purpose. These important comments are the precondition and
postcondition.

2.1 Pre- and Postconditions

The precondition describes, as succinctly as possible in your native tongue, the
conditions under which a method may be called and expected to produce correct
results. Ideally the precondition expresses the state of the program. This state
is usually cast in terms of the parameters passed to the routine. For example,
the precondition on a square root function might be

sqrt

// pre: x is nonnegative

The authors of this square root function expect that the parameter is not a
negative number. It is, of course, legal in Java to call a function or method if
the precondition is not met, but it might not produce the desired result. When
there is no precondition on a procedure, it may be called without failure.

The postcondition describes the state of the program once the routine has
been completed, provided the precondition was met. Every routine should have
some postcondition. If there were not a postcondition, then the routine would
not change the state of the program, and the routine would have no effect!
Always provide postconditions.

Pre- and postconditions do not force you to write code correctly. Nor do they
help you find the problems that do occur. They can, however, provide you with
a uniform method for documenting the programs you write, and they require
more thought than the average comment. More thought put into programs
lowers your average blood pressure and ultimately saves you time you might
spend more usefully playing outside, visiting museums, or otherwise bettering
your mind.

2.2 Assertions

In days gone by, homeowners would sew firecrackers in their curtains. If the
house were to catch fire, the curtains would burn, setting off the firecrackers. It
was an elementary but effective fire alarm.And the

batteries never
needed

replacing.

An assertion is an assumption you make about the state of your program. In
Java, we will encode the assertion as a call to a function that verifies the state
of the program. That function does nothing if the assertion is true, but it halts

2.2 Assertions 35

your program with an error message if it is false. It is a firecracker to sew in
your program. If you sew enough assertions into your code, you will get an
early warning if you are about to be burned by your logic.

N

NW

SW
SE

NE

W

S

E

Principle 5 Test assertions in your code.

The Assert class provides several functions to help you test the state of your
program as it runs:

Assert

public class Assert

{

static public void pre(boolean test, String message)

// pre: result of precondition test

// post: does nothing if test true, otherwise abort w/message

static public void post(boolean test, String message)

// pre: result of postcondition test

// post: does nothing if test true, otherwise abort w/message

static public void condition(boolean test, String message)

// pre: result of general condition test

// post: does nothing if test true, otherwise abort w/message

static public void invariant(boolean test, String message)

// pre: result of an invariant test

// post: does nothing if test true, otherwise abort w/message

static public void fail(String message)

// post: throws error with message

}

Each of pre, post, invariant, and condition methods test to see if its first
argument—the assertion—is true. The message is used to indicate the condition
tested by the assertion. Here’s an example of a check to make sure that the
precondition for the sqrt function was met:

public static double sqrt(double x)

// pre: x is nonnegative

// post: returns the square root of x

{

Assert.pre(x >= 0,"the value is nonnegative.");

double guess = 1.0;

double guessSquared = guess * guess;

while (Math.abs(x-guessSquared) >= 0.00000001) {

// guess is off a bit, adjust

guess += (x-guessSquared)/2.0/guess;

guessSquared = guess*guess;

}

return guess;

}

36 Comments, Conditions, and Assertions

Should we call sqrt with a negative value, the assertion fails, the message
is printed out, and the program comes to a halt. Here’s what appears at the
display:

structure.FailedPrecondition:

Assertion that failed: A precondition: the value is nonnegative.

at Assert.pre(Assert.java:17)

at sqrt(examples.java:24)

at main(examples.java:15)

The first two lines of this message indicate that a precondition (that x was non-
negative) failed. This message was printed within Assert.pre on line 17 of the
source, found in Assert.java. The next line of this stack trace indicates that
the call to Assert.pre was made on line 24 of examples.java at the start of
the sqrt function. This is the first line of the sqrt method. The problem is
(probably) on line 15 of the main procedure of examples.java. Debugging our
code should probably start in the main routine.

Beginning with Java 1.4, assertion testing is part of the formal Java language
specification. The assert keyword can be used to perform many of the types of
checks we have described. If, however, you are using an earlier version of Java,
or you expect your users may wish to use a version of Java before version 1.4,
you may find the Assert class to be a more portable approach to the testing of
the conditions of one’s code. A feature of language-based assertion testing is
that the tests can be automatically removed at compile time when one feels se-
cure about the way the code works. This may significantly improve performance
of classes that heavily test conditions.

2.3 Craftsmanship

If you really desire to program well, a first step is to take pride in your work—
pride enough to sign your name on everything you do. Through the centuries,
fine furniture makers signed their work, painters finished their efforts by dab-
bing on their names, and authors inscribed their books. Programmers should
stand behind their creations.

Computer software has the luxury of immediate copyright protection—it is
a protection against piracy, and a modern statement that you stand behind the
belief that what you do is worth fighting for. If you have crafted something as
best you can, add a comment at the top of your code:

// Image compression barrel for downlink to robotic cow tipper.

// (c) 2001, 2002 duane r. bailey

If, of course, you have stolen work from another, avoid the comment and
consider, heavily, the appropriate attribution.

2.4 Conclusions 37

2.4 Conclusions

Effective programmers consider their work a craft. Their constructions are well
considered and documented. Comments are not necessary, but documentation
makes working with a program much easier. One of the most important com-
ments you can provide is your name—it suggests you are taking credit and re-
sponsibility for things you create. It makes our programming world less anony-
mous and more humane.

Special comments, including conditions and assertions, help the user and
implementor of a method determine whether the method is used correctly.
While it is difficult for compilers to determine the “spirit of the routine,” the
implementor is usually able to provide succinct checks of the sanity of the func-
tion. Five minutes of appropriate condition description and checking provided I’ve done my

time!by the implementor can prevent hours of debugging by the user.

Self Check Problems

Solutions to these problems begin on page 442.

2.1 Why is it necessary to provide pre- and postconditions?

2.2 What can be assumed if a method has no precondition?

2.3 Why is it not possible to have a method with no postcondition?

2.4 Object orientation allows us to hide unimportant details from the user.
Why, then, must we put pre- and postconditions on hidden code?

Problems

Solutions to the odd-numbered problems begin on page 457.

2.1 What are the pre- and postconditions for the length method of the
java.lang.String class?

2.2 What are the pre- and postconditions for String’s charAt method?

2.3 What are the pre- and postconditions for String’s concat method?

2.4 What are the pre- and postconditions for the floor function in the
java.lang.Math class?

2.5 Improve the comments on an old program.

2.6 Each of the methods of Assert (pre, post, and condition) takes the
same parameters. In what way do the methods function differently? (Write a
test program to find out!)

2.7 What are the pre- and postconditions for java.lang.Math.asin class?

2.5 Laboratory: Using Javadoc Commenting

Objective. To learn how to generate formal documentation for your programs.
Discussion. The Javadoc program1 allows the programmer to write comments
in a manner that allows the generation web-based documentation. Program-
mers generating classes to be used by others are particularly encouraged to
consider using Javadoc-based documentation. Such comments are portable,
web-accessible, and they are directly extracted from the code.

In this lab, we will write documentation for an extended version of the Ratio
class we first met in Chapter 1.

Comments used by Javadoc are delimited by a /** */ pair. Note that there
are two asterisks in the start of the comment. Within the comment are a number
of keywords, identified by a leading “at-sign” (@). These keywords identify
the purpose of different comments you right. For example, the text following
an @author comment identifies the programmer who originally authored the
code. These comments, called Javadoc comments, appear before the objects
they document. For example, the first few lines of the Assert class are:

package structure;

/**

* A library of assertion testing and debugging procedures.

* <p>

* This class of static methods provides basic assertion testing

* facilities. An assertion is a condition that is expected to

* be true at a certain point in the code. Each of the

* assertion-based routines in this class perform a verification

* of the condition and do nothing (aside from testing side-effects)

* if the condition holds. If the condition fails, however, the

* assertion throws an exception and prints the associated message,

* that describes the condition that failed. Basic support is

* provided for testing general conditions, and pre- and

* postconditions. There is also a facility for throwing a

* failed condition for code that should not be executed.

* <p>

* Features similar to assertion testing are incorporated

* in the Java 2 language beginning in SDK 1.4.

* @author duane a. bailey

*/

public class Assert

{

. . .

}

For each class you should provide any class-wide documentation, including
@author and @version-tagged comments.

1 Javadoc is a feature of command-line driven Java environments. Graphical environments likely
provide Javadoc-like functionality, but pre- and postcondition support may not be available.

40 Comments, Conditions, and Assertions

Within the class definition, there should be a Javadoc comment for each in-
stance variable and method. Typically, Javadoc comments for instance variables
are short comments that describe the role of the variable in supporting the class
state:

/**

* Size of the structure.

*/

int size;

Comments for methods should include a description of the method’s purpose.
A comment should describe the purpose of each parameter (@param), as well as
the form of the value returned (@return) for function-like methods. Program-
mers should also provide pre- and postconditions using the @pre and @post

keywords.2 Here is the documentation for a square root method.

/**

*

* This method computes the square root of a double value.

* @param x The value whose root is to be computed.

* @return The square root of x.

* @pre x >= 0

* @post computes the square root of x

*/

To complete this lab, you are to

1. Download a copy of the Ratio.java source from the Java Structures web-
site. This version of the Ratio class does not include full comments.

2. Review the code and make sure that you understand the purpose of each
of the methods.

3. At the top of the Ratio.java file, place a Javadoc comment that describes
the class. The comment should describe the features of the class and an
example of how the class might be used. Make sure that you include an
@author comment (use your name).

4. Run the documentation generation facility for your particular environ-
ment. For Sun’s Java environment, the Javadoc command takes a parame-
ter that describes the location of the source code that is to be documented:

javadoc prog.java

2 In this book, where there are constraints on space, the pre- and postconditions are provided in
non-Javadoc comments. Code available on the web, however, is uniformly commented using the
Javadoc comments. Javadoc can be upgraded to recognize pre- and postconditions; details are
available from the Java Structures website.

2.5 Laboratory: Using Javadoc Commenting 41

The result is an index.html file in the current directory that contains links
to all of the necessary documentation. View the documentation to make
sure your description is formatted correctly.

5. Before each instance variable write a short Javadoc comment. The com-
ment should begin with /** and end with */. Generate and view the
documentation and note the change in the documentation.

6. Directly before each method write a Javadoc comment that includes, at
a minimum, one or two sentences that describe the method, a @param

comment for each parameter in the method, a @return comment describ-
ing the value returned, and a @pre and @post comment describing the
conditions.

Generate and view the documentation and note the change in the doc-
umentation. If the documentation facility does not appear to recognize
the @pre and @post keywords, the appropriate Javadoc doclet software
has not been installed correctly. More information on installation of the
Javadoc software can be found at the Java Structures website.

Notes:

